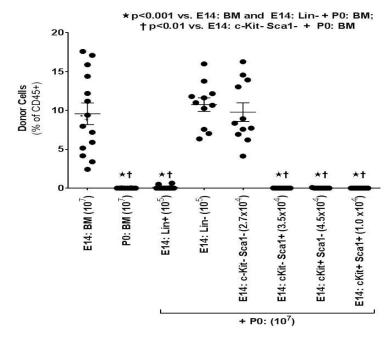
## UNRAVELING THE MECHANISM OF TOLERANCE INDUCTION FOLLOWING IN UTERO TRANSPLANTATION

Johnny Stratigis<sup>1</sup>, Nicholas Ahn<sup>1</sup>, Haiying Li<sup>1</sup>, Camila Fachin<sup>1,3</sup>, Andre Dias<sup>1,4</sup>, Aimee Kim<sup>1</sup>, William Peranteau<sup>1</sup>, <u>Stavros Loukogeorgakis<sup>1,2</sup></u>, Allan Flake<sup>1</sup>


<sup>1</sup>Center for Fetal Research of The Children's Hospital of Philadelphia, Philadelphia, PA, USA, <sup>2</sup>Surgery Unit, Institute of Child Health, University College London, London, UK, <sup>3</sup>Federal University of São Paulo, São Paulo, SP, Brazil, <sup>4</sup>Federal University of Paraná, Curitiba, PR, Brazil

**Aim of Study:** In utero transplantation (IUT) of haematopoietic cells results in immune tolerance, allowing long-term haematopoietic engraftment and organ transplantation across immune barriers. In the present study we sought to determine the mechanism of tolerance induction following IUT of bone marrow (BM)-derived haematopoietic cells.

**Methods:** BM isolated from 6-week old B6GFP mice was sorted into four subpopulations based on c-kit and Sca1 expression after depletion of lineage-committed cell (Lin+). Allogenic IUT of selected subpopulations contained in 107 BM cells (positive control) was performed at E14 into Balb/c mice via the vitelline vein. Cells were tracked/phenotyped in the fetal liver and the immature thymus at E15-16. For assessment of tolerance each group received an additional transplant of 107 B6GFP BM cells at birth (P0). Haematopoietic engraftment of donor cells (% GFP+ within CD45+) was assessed at 4 weeks in blood. Statistical analysis was performed using 1-way ANOVA.

**Main Results:** Transplantation of 107 allogenic BM cells resulted in successful engraftment when injected at E14 (9.5 $\pm$ 3.7%), but postnatal rejection when administered at P0 (0.01 $\pm$ 0.01%, p<0.001). Lin- cells (105) engrafted in the fetal liver, differentiated into dendritic cells (DC; CD11c+) that homed to the thymus and induced tolerance (10.8 $\pm$ 1.1%). This is in contrast to what we saw when IUT was performed with Lin+ cells (105), which did not induce tolerance (0.09 $\pm$ 0.06%; p<0.001). Of the four Lin- subpopulations only cKit-/Sca1- cells generated DC that were found in the thymus at E16 resulting in tolerance (2.7x104 cells; 6.8 $\pm$ 1.0; p<0.01 vs. other Lin- subpopulations and Lin+; p>0.05 vs. Lin-; Figure).

**Conclusion:** Tolerance induction post allogenic IUT depends upon Lin- c-kit- Sca1- cells, a minute sub-fraction of BM. Tolerance is mediated by timely thymic homing of fetal liver-generated, donor-derived, CD11c+ DC. This finding has important clinical implications for prenatal tolerance induction for cellular and organ transplantation.

